

Madden-Julian Oscillation (MJO): A Key Tropical Phenomenon

The Madden-Julian Oscillation (MJO) is an equatorial, eastward-moving system of atmospheric disturbances characterized by alternating wet and dry phases. It influences global weather and oceanic patterns, particularly across the Indian and Pacific Oceans, with occasional reach into the Atlantic.

Fundamental Characteristics

- **Scale & Duration:** Planetary-scale phenomenon with 30–60 day cycles.
- **Movement:** Propagates eastward along the equator at about 5 m/s (11 mph).
- **Phases:** Alternates between enhanced (wet) and suppressed (dry) convective phases.
- **Measurement:** Monitored using outgoing longwave radiation—lower values indicate stronger convection (i.e. more rainfall).

MJO Dynamics and Dipole Behaviour

Convective (Enhanced Rainfall) Phase

- Surface winds **converge** and push moist air upwards.
- Air cools and **condenses** into clouds, producing heavy rainfall.
- At upper levels, winds **diverge**, supporting continued uplift.

Suppressed Rainfall Phase

- Upper-level winds **converge**, causing dry air to descend.
- Descending air **warms**, drying the atmosphere and suppressing rain.
- Surface winds **diverge**, reducing moisture availability.

Dipole Nature

- The MJO often divides the tropics into two contrasting zones:
 - One half experiences **enhanced convection and rainfall**.
 - The other sees **suppressed activity and dryness**.

- For an MJO to be considered **active**, this dipole must be distinct and propagating eastward.

MJO's Influence on the Indian Monsoon

- Onset & Breaks:** The MJO strongly affects the timing, intensity, and intra-seasonal variability of the Indian monsoon.
- Rainfall Boost:** Enhanced convection from the MJO leads to **increased rainfall in India** within 5–10 days of sea surface warming.
- Break Periods:** When the MJO's active phase moves away from the Indian subcontinent, **monsoon breaks** (especially in July) tend to occur.

Impact on Tropical Cyclones

- Storm Formation:** Ascending motion during the active phase creates a favorable environment for cyclogenesis.
- Suppression:** Descending motion during the suppressed phase discourages cyclone development.
- Regional Shifts:** As the MJO advances, cyclone-prone zones move from: **Western Pacific → Central Pacific → Atlantic**
- Inversion Pattern:** Cyclone activity often shows a reverse trend between the **North Pacific and North Atlantic**, depending on MJO phases.

Favorable Atmospheric Conditions

- Active MJO (Phase 4):**
 - High amplitude phase 4 created ideal conditions for rain enhancement over the Indian Ocean and western Pacific.
 - Southwest India benefited from a significant rainfall boost.
- Strong Cross-Equatorial Moisture Flow:**
 - Intensified moisture transport across the equator fueled cloud formation.
- Low Pressure over Arabian Sea:**
 - A developing cyclonic system led to heavy pre-monsoon showers and accelerated the monsoon's northward advance.
